A physiological role of cyclic electron transport around photosystem I in sustaining photosynthesis under fluctuating light in rice

نویسندگان

  • Wataru Yamori
  • Amane Makino
  • Toshiharu Shikanai
چکیده

Plants experience a highly variable light environment over the course of the day. To reveal the molecular mechanisms of their photosynthetic response to fluctuating light, we examined the role of two cyclic electron flows around photosystem I (CEF-PSI)--one depending on PROTON GRADIENT REGULATION 5 (PGR5) and one on NADH dehydrogenase-like complex (NDH)--in photosynthetic regulation under fluctuating light in rice (Oryza sativa L.). The impairment of PGR5-dependent CEF-PSI suppressed the photosynthetic response immediately after sudden irradiation, whereas the impairment of NDH-dependent CEF-PSI did not. However, the impairment of either PGR5-dependent or NDH-dependent CEF-PSl reduced the photosynthetic rate under fluctuating light, leading to photoinhibition at PSI and consequently a reduction in plant biomass. The results highlight that (1) PGR5-dependent CEF-PSI is a key regulator of rapid photosynthetic responses to high light intensity under fluctuating light conditions after constant high light; and (2) both PGR5-dependent and NDH-dependent CEF-PSI have physiological roles in sustaining photosynthesis and plant growth in rice under repeated light fluctuations. The highly responsive regulatory system managed by CEF-PSI appears able to optimize photosynthesis and plant growth under naturally fluctuating light conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photosystem I cyclic electron flow via chloroplast NADH dehydrogenase-like complex performs a physiological role for photosynthesis at low light

Cyclic electron transport around photosystem I (PS I) was discovered more than a half-century ago and two pathways have been identified in angiosperms. Although substantial progress has been made in understanding the structure of the chloroplast NADH dehydrogenase-like (NDH) complex, which mediates one route of the cyclic electron transport pathways, its physiological function is not well under...

متن کامل

Physiological functions of PsbS-dependent and PsbS-independent NPQ under naturally fluctuating light conditions.

The PsbS protein plays an important role in dissipating excess light energy as heat in photosystem II (PSII). However, the physiological importance of PsbS under naturally fluctuating light has not been quantitatively estimated. Here we investigated energy allocation in PSII in PsbS-suppressed rice transformants (ΔpsbS) under both naturally fluctuating and constant light conditions. Under const...

متن کامل

Increased sensitivity of photosynthesis to antimycin A induced by inactivation of the chloroplast ndhB gene. Evidence for a participation of the NADH-dehydrogenase complex to cyclic electron flow around photosystem I.

Tobacco (Nicotiana tabacum var Petit Havana) ndhB-inactivated mutants (ndhB-) obtained by plastid transformation (E.M. Horvath, S.O. Peter, T. Joët, D. Rumeau, L. Cournac, G.V. Horvath, T.A. Kavanagh, C. Schäfer, G. Peltier, P. MedgyesyHorvath [2000] Plant Physiol 123: 1337-1350) were used to study the role of the NADH-dehydrogenase complex (NDH) during photosynthesis and particularly the invol...

متن کامل

ON THE ROLE OF CYTOCHROME b,,s IN OXYGEN EVOLUTION IN PHOTOSYNTHESIS

The role of cytochrome bss9 in photosynthesis has remained enigmatic despite considerable efforts to elucidate its function [ 11. Some experiments show that cytochrome bss9 is closely associated with the oxidizing side of photosystem II, others indicate redox activity between the two photosystems, while still others suggest participation in a cycle around photosystem II. Part of the enigma of c...

متن کامل

PGR5 Is Involved in Cyclic Electron Flow around Photosystem I and Is Essential for Photoprotection in Arabidopsis

During photosynthesis, plants must control the utilization of light energy in order to avoid photoinhibition. We isolated an Arabidopsis mutant, pgr5 (proton gradient regulation), in which downregulation of photosystem II photochemistry in response to intense light was impaired. PGR5 encodes a novel thylakoid membrane protein that is involved in the transfer of electrons from ferredoxin to plas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016